Insulin-like growth factor II mRNA binding protein 1 associates with Gag protein of human immunodeficiency virus type 1, and its overexpression affects virus assembly.
نویسندگان
چکیده
The assembly of human immunodeficiency virus type 1 (HIV-1) particles is driven by viral Gag protein. This function of Gag not only benefits from its self-multimerization property but also depends on its interaction with a number of cellular factors such as TSG101 and ALIX/AIP1 that promote virus budding and release from cell surfaces. However, interaction with Gag also allows some cellular factors such as APOBEC3G and Trim5alpha to access viral replication machinery and block viral replication. In this study, we report a new HIV-1 Gag-binding factor named insulin-like growth factor II mRNA binding protein 1 (IMP1). Gag-IMP1 interaction requires the second zinc finger of the nucleocapsid (NC) domain of Gag and the KH3 and KH4 domains of IMP1. A fourfold reduction of HIV-1 infectivity was seen with overexpression of the wild-type IMP1 and its mutant that is able to interact with Gag but not with overexpression of IMP1 mutants exhibiting Gag-binding deficiency. The decreased viral infectivity was further shown as a result of diminished viral RNA packaging, abrogated Gag processing on the cellular membranes, and impeded maturation of virus particles. Together, these results demonstrate that IMP1 interacts with HIV-1 Gag protein and is able to block the formation of infectious HIV-1 particles.
منابع مشابه
Reversible binding of recombinant human immunodeficiency virus type 1 gag protein to nucleic acids in virus-like particle assembly in vitro.
Recombinant human immunodeficiency virus type 1 (HIV-1) Gag protein can assemble into virus-like particles (VLPs) in suitable buffer conditions with nucleic acid. We have explored the role of nucleic acid in this assembly process. HIV-1 nucleocapsid protein, a domain of Gag, can bind to oligodeoxynucleotides with the sequence d(TG)(n) with more salt resistance than to d(A)(n) oligonucleotides. ...
متن کاملThe host protein Staufen1 participates in human immunodeficiency virus type 1 assembly in live cells by influencing pr55Gag multimerization.
Human immunodeficiency virus type 1 (HIV-1) requires the sequential activities of virus-encoded proteins during replication. The activities of several host cell proteins and machineries are also critical to the completion of virus assembly and the release of infectious virus particles from cells. One of these proteins, the double-stranded RNA-binding protein Staufen1 (Stau1), selectively associ...
متن کاملHIV-1 Gag Blocks Selenite-Induced Stress Granule Assembly by Altering the mRNA Cap-Binding Complex
UNLABELLED Stress granules (SGs) are dynamic accumulations of stalled preinitiation complexes and translational machinery that assemble under stressful conditions. Sodium selenite (Se) induces the assembly of noncanonical type II SGs that differ in morphology, composition, and mechanism of assembly from canonical SGs. Se inhibits translation initiation by altering the cap-binding activity of eu...
متن کاملInteraction of the human immunodeficiency virus type 1 nucleocapsid with actin.
The nucleocapsid (NC) domain of the retrovirus Gag protein plays several important roles in the viral life cycle, including virus assembly, viral genomic RNA encapsidation, primer tRNA placement, and enhancement of viral reverse transcription. In this study, deletion of NC domain of human immunodeficiency virus type 1 (HIV-1) Gag was found to drastically reduce virus particle production in CD4(...
متن کاملHuman Ubc9 contributes to production of fully infectious human immunodeficiency virus type 1 virions.
Ubc9 was identified as a cellular protein that interacts with the Gag protein of Mason-Pfizer monkey virus. We show here that Ubc9 also interacts with the human immunodeficiency virus type 1 (HIV-1) Gag protein and that their interaction is important for virus replication. Gag was found to colocalize with Ubc9 predominantly at perinuclear puncta. While cells in which Ubc9 expression was suppres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 82 12 شماره
صفحات -
تاریخ انتشار 2008